

Navy METOC Modeling

ESPC Workshop 21 March 2012 Steven Payne

Production Centers

- Fleet Numerical Meteorology and Oceanography Center
 - Monterey CA
 - Linux Clusters
 - Current 5348 Cpus / 56 Tflops
 - Projected FY12 7648 Cpus / 81 Tflops
- Naval Oceanographic Office
 - Stennis Space Center MS
 - Navy HPCMO DSRC (15% Operational)
 - Current IBM Power 5+, 6, Cray XT5: 19328 cores / 221 Tflops
 - Projected FY 12 33600 cores / 672 Tflops
 - Projected FY 14 1700 to 2000 Tflops

Models Overview Atmosphere

- Navy Operational Global Atmospheric Prediction System (NOGAPS)
- Navy Atmospheric Variational Data Assimilation System Accelerated Representer (NAVDAS-AR)
- Navy Global Environmental Model (NAVGEM)
- Ensemble Forecast System (EFS)
- Navy Aerosol Analysis and Prediction System (NAAPS)
- Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)
 - COAMPS NAVDAS
 - COAMPS-OnScene (OS)
 - COAMPS-Tropical Cyclone (TC)
- Geophysical Fluid Dynamics Laboratory Tropical Cyclone Model (GFDN)
- Advanced Climate Analysis and Forecasting System (ACAF)

Models Overview Ocean

- Global Navy Coastal Ocean Model (G-NCOM)
- Global Hybrid Coordinate Ocean Model (G-HYCOM)
- Relocatable Navy Coastal Models (R-NCOM)
- Arctic Cap Nowcast Forecast System (ACNEFS)
- Wave Models SWAN, WAM, and Wave Watch 3
- Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)
 - COAMPS/NCOM
- Coastal and Estuarine Models DELFT 3D and ADCIRC
- Tide Models PC Tides, ADCIRC, and OTIS
- Navy Coastal Ocean Data Assimiliation NCODA (3DVar)

NAVGEM Current Status

(Version 1.0)

Data Assimilation

- Variational bias correction for radiance data
- NASA Land Information System (LIS)

Dynamics

- Semi-Lagrangian/Semi-implicit advection
- T359L42 (37km)
- Three-time level integration, Time step 360s
- Ozone prediction

Physics

- Simplified Arakawa Schubert scheme for cumulus parameterization
- Shallow convection scheme
- Adjustment of gravity wave drag
- Reduction of enhanced surface roughness over land

Şlide 5

NAVGEM FY12

Development of NAVGEM (SL/SI)

- New dynamic core with SL/SI scheme
- Higher resolutions, larger time step
- New advection of potential temperature
- Advanced physics
 - SAS convective Scheme
 - Shallow convection
 - RRTMG radiation package
 - Prognostic cloud scheme

New runscripts

Upgrade of DA

- Variational BC
- Digital filter in the inner loop
- pseudo-relative humidity at higher altitudes

Diagnostic package

- Wave spectrum
- Bias

Upgrade EFS

 Higher resolution (T119L30 to T159L30) and 9-band ET, transitioned on 14 Sep, 2011

NAVGEM: Long-term Plans

Sep 2014

- Variational-Ensemble Hybrid Data Assimilation
- Dynamic Core
 - Higher resolution (T600+L60+)
 - Model top at mesopause (~90 km)
 - ESMF super-structure framework
 - Coupling with HYCOM (FY12-14)
- Advanced Physics:
 - Prognostic Clouds (FY13)
 - New Radiation scheme (FY12)
 - Convective and Mid-upper atmospheric gravity wave drag
 - New land surface model and data assimilation (FY13)

Next Generation: Global Hybrid Coordinate Ocean Model (G-HYCOM)

- Next generation dynamic model
- POM-based / variable vertical coordinates
- NOPP Consortium
 - NRL lead.
 - U Miami, Los Alamos, French, NOAA/AOML, etc.
- Forecasts 3D Temperature, Salinity, Currents, Elevation
 - To 120 hours
 - ESMF backbone
- Initial global resolution 1/12 deg (2010)
 - Final resolution 1/25 deg (2014)
 - 40+ vertical layers
 - Pressure, depth, sigma coordinates as needed
- FNMOC NOGAPS atmospheric forcing
- Assimilates SST / SSH / surface obs / profile data – using NCODA
- Planned to replace global NCOM & some regional domains
 - Running pre-operational at NAVOCEANO
 - VTR completed
 - OPTEST FY11
- Global service to NOAA, others

Surface Salinity (30 days)

NRL Stennis graphics

1/12 (9 km / 5 nm) \rightarrow 1/25 deg (3.8 km / 1.8 nm) in 2014

COUPLED COAMPS/NCOM

- This joint OPTEST is the first of its kind. It evaluates
 - The ESMF 2-way coupled atmosphere-ocean configuration of COAMPS-OS
 - Concurrent installations at FNMOC and NAVOCEANO under a joint CONOPS.
- The <u>primary OPTEST objectives</u>
 - 1. Ensure that the system is ready for transition from R&D to operations (TRL-9)
 - 2. Demonstrate that COUPLED COAMPS can provide Fleet support that is <u>equal to or better than</u> the current capabilities.
- This is a functional evaluation the science behind this configuration of COAMPS has been reported in the previously approved Validation Test Report (VTR).
- These OPTEST results show that the ESMF-COUPLED COAMPS system is as good as or slightly better than the current operational COAMPS (atmosphere) and NCOM (ocean) capabilities.

Watchfloor of the Future

WoTF level of work determination model parameters include:

Seas 12ft or greater;

Winds 30kts or greater;

Thunderstorms likely;

Severe Thunderstorms likely;

Snowfall 4" or greater over 24hrs;

Excessive rainfall - I"/hr and/or 3"/24hrs; and

Mode1 uncertainty for weather system of interest (i.e., surface low pressure) timing, track, and intensity.

(Note: Parameters are in 12 hour intervals out to 10 days.

Visualization shall allow simultaneous and selectable overlays of model parameters with current and projected ship positions, fixed fleet OP-AREAS, standard aviation routes, fixed CNIC installations, and the following METOC overlays:

High winds and seas warnings;

Tropical Warnings; and

EFS or other ensemble generated Gale and 12' Seas probability charts.

Determination of WoTF Level 3 decision engagement will be the intersection of fleet assets present in areas of destructive weather and where significant model uncertainty exists.

FNMOC Climo Requests

- 1. Monthly Winds
- 2. Monthly Waves
- 3. Monthly precipitation
- 4. Daily archived winds/waves for forensics research
- 5. Ceilings/visibility
- 6. EM ducting (dM/dz profile)
- 7. Tropical Cyclones tracks
- For all but 4), monthly averages are sufficient.
- Filtering on 'predictable' climatological events such as El Nino or the Arctic Oscillation can allow for better estimates, but reduce the samples, so the statistical significance should be provided.
- Resolution requirements vary widely, depending on the mission and the parameters. In many cases, our dataset horizontal resolution is insufficient to provide a useful product. For EM applications, both the horizontal and vertical resolution are never sufficient in climate reanalyses or models. Some type of "downscaling" is required.
- Thresholding of parameters is often required. Sometimes the focus is on extreme, low probability event

Slide 11

Ocean Prediction Requirements

- Not documented well, but the fleet asks frequently for predictions beyond the present 3-5 day forecasts
 - Presently use historical model runs or observation based climatologies such as GDEM (temperature/salinity)
 - Need to have a conditional climatology of temperature/salinity/currents
 - Need a method to blend the short term forecasts with the appropriate climatology
- Presently we measure model skill against in-situ measurements of temperature and salinity, in particular, the vertical gradients of these parameters.

TFCC ESPC Requirements

- Projected tropical cyclone frequency and intensity
- Regional sea level rise projections and methodologies to predict
- Aerosols, dust, smoke, and soot another substantial uncertainty in predictions of future climate
- Clouds Current climate models do not represent cloud physics well
- Ocean circulation large uncertainties in predictions of future ocean changes (historical data is lacking)
- Precipitation Scientists and policymakers to use climate models to assess regional changes
- Developing a range of model types (e.g., statistical, dynamical, statistical dynamical, multimodel)
- Improving the physics in models of sea ice, ice sheets, the atmosphere, the ocean, permafrost, and coastal zones Reducing and quantifying the uncertainties of these physical models
- Providing probabilistic output from climate models and in climate assessments
- Sea ice extent and thickness
- Linking the poles (air/met and ocean) to global models including a more refined polar prediction in and of itself
- Providing climate assessments on a 5-10 year basis for FYDP cycle decisions
- Climate models that focus on the 30 year recapitalization cycle and not just 50-100 year climate models.